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Abstract Eocene to Early Oligocene syn-rift deposits

of the southern Upper Rhine Graben (URG) accumu-

lated in restricted environments. Sedimentation was

controlled by local clastic supply from the graben flanks,

as well as by strong intra-basinal variations in accom-

modation space due to differential tectonic subsidence,

that in turn led to pronounced lateral variations in

depositional environment. Three large-scale cycles of

intensified evaporite sedimentation were interrupted by

temporary changes towards brackish or freshwater

conditions. They form three major base level cycles that

can be traced throughout the basin, each of them rep-

resenting a stratigraphic sub-unit. A relatively constant

amount of horizontal extension (DL) in the range of 4–

5 km has been estimated for the URG from numerous

cross-sections. The width of the rift (Lf), however, varies

between 35 and more than 60 km, resulting in a variable

crustal stretching factor between the bounding master-

faults. Apart from block tilting, tectonic subsidence was,

therefore, largely controlled by changes in the initial rift

width (L0). The along-strike variations of the graben

width are responsible for the development of a deep,

trough-like evaporite basin (Potash Basin) in the nar-

rowest part of the southern URG, adjacent to shallow

areas in the wider parts of the rift such as the Colmar

Swell in the north and the Rhine Bresse Transfer Zone

that delimits the URG to the south. Under a constant

amount of extension, the along-strike variation in rift

width is the principal factor controlling depo-centre

development in extensional basins.

Keywords Upper Rhine Graben � Syn-rift

sedimentation � Genetic stratigraphy � Crustal

extension � Stretching factor

Introduction

The Upper Rhine Graben (URG) forms the central part

of the Cenozoic Central European Rift System, tra-

versing Europe from the Mediterranean to the North

Sea (e.g. Dèzes et al. 2004; Fig. 1). Graben formation is

thought to have resulted from uniform crustal exten-

sion, involving the reactivation of numerous pre-exist-

ing faults under a temporally changing stress regime

(Illies and Greiner 1978; Schumacher 2002). However,

the URG comprises several sub-basins showing distinct

differences in terms of amount and timing of subsidence,

and hence of sediment fill (Sittler 1969; Sissingh 1998).

In the URG intense exploration for hydrocarbons

and potash salts has yielded a large data set (drillings,

seismic lines) that has become accessible during the last

decade. Due to Neogene uplift and erosion, the rift

flanks and marginal parts of the basin are exposed and

accessible for field investigations. Numerous recent

studies have provided new insights into the basin

architecture and graben evolution (e.g. Schumacher

2002; Derer et al. 2003; Berger et al. 2005a, b; Le Carlier

de Veslud et al. 2005; Rotstein et al. 2005; Ustaszewski

et al. 2005a). Nonetheless, the URG is lacking 3D

seismic coverage and many aspects concerning the age

and timing of crustal movements, the palaeogeography

and the thermal history are still a matter of debate.

In the light of newly available data the sedimentary

record of the URG has been reviewed applying the

new concept of genetic stratigraphy (sensu Cross and
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Lessenger 1998). Since such investigations address

quantitative aspects of sedimentation, they may pro-

vide important information about tectonic graben

development. Additionally, graben volume, extension

and crustal stretching factors have been estimated

using two new cross-sections, located in different parts

of the area, and some published cross-sections across

the northern URG have been re-evaluated. A detailed

basin analysis can elucidate how sedimentation was

affected by ‘‘syn-rift’’ tectonic movements and thus

contributes valuable information on rifting dynamics

(e.g. Leeder and Gawthorpe 2002).

The purpose of this study is to outline the tectono-

sedimentary basin evolution of the southern URG

during the late Middle Eocene to Early Oligocene

main rifting phase. Special attention is paid to the

along-strike variations in the crustal stretching factor b
and to the basic relationships between sedimentation

and tectonics during extensional basin development.

Geological context

Study area

The study area comprises the southern part of the URG,

between the Colmar Swell in the north and the Jura

Mountains in the south (Figs. 2, 3, 4). Today the area is

an elevated zone that covers the watersheds between

the North Sea (Rhine) and the Black Sea (Danube) as

well as the North Sea and the Mediterranean (Doubs)

(Fig. 3). This regional topographic dome coincides with

a decreased crustal thickness of 24 km below the Mul-

house Potash Salt Basin (Potash Basin).

The eastern and western parts of the southern URG

show a slight asymmetry. The western part represents

an elongated half graben, while the eastern part is

dissected into a number of antithetic blocks (Fig. 4).

The Vosges to the west and the Black Forest to the east

form the graben shoulders of the southern URG; on

both sides the crystalline basement is exposed. To-

wards the south the graben is delimited by the frontal

folds of the Jura Mountains. Within the study area four

structural domains are distinguished (Fig. 2):

Potash Basin (Fig. 4a; e.g. Courtot et al. 1972;

Blanc-Valleron and Schuler 1997); it represents the

depo-centre of the southern URG. There, up to

1,800 m thick evaporites and marls accumulated during

the late Middle Eocene to Early Oligocene main rifting

stage. The salt partly forms diapirs and the basin fill is

overprinted by salt tectonics resulting in shallow, listric

low-angle detachments as well as block tilting and

bending of incompetent layers (see Blanc-Valleron

1991; Lutz and Cleintuar 1999). The Potash Basin is

bordered to the east and west by major normal fault

zones with up to several 1,000 m throw. In the basin

interior the throw on normal faults is usually less than a

few hundred metres (e.g. Bertrand et al. 2005). Two

major sub-basins, one in the west and one in the east,

represent the hanging-wall half grabens of the large

border faults. The Wittelsheim Sub-Basin to the west

extends for about 40 km in N–S direction between

Colmar and Mulhouse. The Buggingen Sub-Basin to

the east extends for about 15 km in N–S direction be-

tween the Freiburg Embayment and the Klemmbach

Fault (Fig. 2).

Colmar Swell and Freiburg Embayment delimit the

Potash Basin to the north. They are characterized by

relatively thin syn-rift deposits. The Colmar Swell

forms an elevation, crossing the URG obliquely be-

tween Colmar and north of the Kaiserstuhl, where it

passes into the northern part of the Freiburg Embay-

ment.

Tilted Block Array between Belfort and Bad Säck-

ingen (Figs. 2, 4b); it is located at the southern end of

the URG. The transfer zone between Mulhouse and

the Wehra-Zeiningen Fault marks the transition to the

Potash Basin (Fig. 2). The Dannemarie Basin forms

the southern prolongation of the Wittelsheim Sub-

Basin (e.g. Wagner 1938) and contains the thickest syn-

rift deposits of the southernmost graben domain. This

basin changes from a symmetrical graben in the north

to a half graben in the south. The Tilted Block Array

rises progressively towards the eastern graben shoul-

Fig. 1 The southern part of the URG (encircled) occupies a
central position within the Central European Rift System. Rift
basins (light grey): BG Bresse Graben, EG Eger Graben, HD
Hessian Depression, LRG Lower Rhine Graben, URG Upper
Rhine Graben; Cenozoic volcanics (black); the Variscan massifs
(dark grey) are bounded by inherited faults (black lines) and
Tertiary rifts (modified from Dèzes et al. 2004)
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Fig. 2 Schematic geological
map of the southern URG.
The depo-centre of the
Mulhouse Potash Salt Basin
(Potash Basin) is located in
the narrowest part of the
graben that is flanked by the
highest mountains of the
Vosges and Black Forest.
Towards the south the graben
widens considerably to the
Tilted Block Array where it is
bordered by the Jura
Mountains

Fig. 3 Digital elevation map
of the study area on which a
simplified fault grid and
isopaches of graben fill
(broken lines; thickness in m)
have been superimposed. This
part of the graben was
strongly uplifted and exposed
during the Neogene. The area
forms an intra-continental
high, gathering the
watersheds between the
North Sea, the Black Sea and
the Mediterranean
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der. It comprises from W to E the southern Danne-

marie Basin (Le Carlier de Veslud et al. 2005), Alt-

kirch Block, Sierentz Block (Rotstein et al. 2005),

Basel Block and Dinkelberg Block. In map view, the

hanging wall half grabens of these blocks appear as

Tertiary filled embayments that encroach onto the

front of the Jura Mountains (Fig. 2). A mosaic of small

fault blocks occupies the western part of the Mulhouse-

Wehra Transfer Zone. In the east, however, this zone is

represented by a distinct dextral tear fault, the Kand-

ern-Hausen Fault. This fault juxtaposes the Dinkelberg

Block against the Black Forest and forms the connec-

tion between the Black Forest Border Fault and the

Wehra-Zeiningen Fault.

Jura Mountains; they consist of Mesozoic pre-rift

series and contain several small Tertiary basins, such as

the Laufen Basin and the Delsberg Basin (e.g. Laub-

scher 1998; Berger et al. 2005a). During the Palaeo-

gene these basins were occasionally connected to the

southern URG and/or to the Molasse Basin (e.g. Ber-

ger et al. 2005a). Palaeogene deposits onlap onto

monoclines of pre-rift series at the southern end of the

graben and hence document its stable position since

that time (Ustaszewski et al. 2005a). The southern end

of the URG forms part of the so-called Rhine Bresse

Transfer Zone (RBTZ), along which crustal extension

across the URG was transferred via a diffuse zone to

the Bresse Graben (e.g. Laubscher 1970; Illies 1981;

Ustaszewski et al. 2005b).

Graben evolution

Palaeozoic basement configuration

The basement below the URG is part of the Variscan

internides comprising several terranes (e.g. Franke

1989). Pre-existing faults within the crystalline base-

ment were reactivated during the formation of the

URG (e.g. Schumacher 2002). They had originally

developed during the late phases of the Variscan

orogeny (e.g. Cloos 1939), as well as during Late Pal-

aeozoic wrench tectonics that led to the development

of several transtensional intramontane basins, the so-

called Permo-Carboniferous Troughs (e.g. Ziegler

1990; Wetzel et al. 2003) and fault zones, including the

NNE-trending ‘‘Rhenish Lineament’’ (Boigk and

Schöneich 1970).

The Permo-Carboniferous Burgundy Trough (e.g.

Boigk and Schöneich 1970) underlies the area of the

RBTZ, the northern Jura Mountains and the adjacent

part of the southern URG (Ustaszewski et al. 2005a).

In many instances, Cenozoic graben structures and

Palaeozoic basement structures coincide spatially. The

Potash Basin, for instance, is bordered to the SE by the

Klemmbach Fault (Schnarrenberger 1925), forming the

prolongation of the E–W striking Badenweiler-Len-

zkirch Zone (Wagner 1938). This zone has been

interpreted as a Variscan suture (Löschke et al. 1998).

To the NE, the boundary of the Potash Basin coincides

with a NW-trending dyke swarm within the basement

of the Black Forest (see Metz 1970). The Dinkelberg

Block, as a further example, is juxtaposed against the

Black Forest along Late Palaeozoic shear zones

(Echtler and Chauvet 1992).

Mesozoic pre-rift sedimentation

During the Triassic and Jurassic the study area be-

longed to the southern part of the epicontinental

Germanic Basin, where about 1.2–1.5 km of sediments

accumulated (e.g. Geyer and Gwinner 1986). Lateral

facies and thickness changes of the Mesozoic sediments

point to the reactivation of Palaeozoic basement

structures (Wetzel et al. 2003; Ziegler et al. 2004).

During the Triassic depositional environments

changed repeatedly between continental and restricted

shallow marine conditions. Evaporites formed during

the Middle and Late Triassic (e.g. Geyer and Gwinner

1986). During the Jurassic predominantly shales and

carbonates accumulated in a subtropical epicontinental

sea. Carbonate platforms developed during the Middle

Dogger and the Malm (e.g. Ziegler 1990). Cretaceous

sediments are lacking in the URG area, because of

non-deposition or erosion. Therefore, the area is con-

sidered a lowland close to base level during the Late

Cretaceous, but this is still a matter of debate (e.g.

Ziegler 1990; Müller et al. 2002; Timar-Geng et al.

2006).

Cenozoic graben formation

The earliest hint of rift-related activity is minor vol-

canism during the Palaeocene about 60 Ma ago (Keller

et al. 2002). Prior to rift-induced subsidence, palaeo-

sols on top of the pre-rift sediments document weath-

ering and denudation before Early to Middle Eocene

times. Below this erosional unconformity the strati-

graphic age of the Mesozoic subcrop increases gener-

ally towards the north with superimposed local domes

and depressions (e.g. Sittler 1969; Fig. 5). This implies

a general southward tilt of an undulating pre-rift land

surface.

The oldest known syn-rift sediments in the southern

URG are red iron-pisolite-bearing (feralitic) palaeo-

sols (Siderolite Formation) and freshwater limestones

(Buchsweiler Formation). Mammalian remains found
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therein provided a Late Lutetian age (Schmidt-Kittler

1987). The onset of lacustrine sedimentation in the

basin interior, as well as the local accumulation of

residual clays in wedge-shaped grabens along the main

border faults (Hinsken 2003) and within the adjacent

Jura (Laubscher 2004) clearly indicate the onset of

tectonic movements by the Middle Eocene at the lat-

est.

Increased rifting during the late Middle Eocene to

Early Oligocene (Lutetian-Rupelian) led to the for-

mation of several evaporitic sub-basins, within the

central and the southern URG including the Potash

Basin (e.g. Blanc-Valleron and Schuler 1997). In these

sub-basins the environment changed repeatedly be-

tween terrestrial, fluvial, lacustrine, brackish and

evaporitic (e.g. Duringer 1988).

In the northern and central URG, deposits of that

time are subdivided in the (basal) Green Marl

Formation (Lymnaeenmergel) and (up-section) the

Pechelbronn Beds (Pechelbronn Schichten), whereas in

the southern URG deposits of that time constitute

the Salt Formation (Salzfolge). The Salt-Formation

represents the majority of graben-fill in the southern

URG, in particular in the Potash Basin, where it con-

tains large amounts of evaporites. Fault-related distri-

bution of facies and thickness implies that the Salt

Formation represents syn-rift sedimentation (Duringer

1988; Hauber 1991; Rotstein et al. 2005). Therefore, it

is the centre of interest in this study.

During the Middle Oligocene (Late Rupelian), a

marine transgression flooded the URG and the area to

the south. Grey muds and sands that constitute the

Grey Marl Formation (Graue Schichtenfolge) were

deposited. Minor displacements along faults occurred

when the Grey Marl Formation formed (Hauber 1991;

Rotstein et al. 2005), while the coastline was shifted

onto the graben shoulders and the northern Jura

(Wittmann 1952; Ustaszewski et al. 2005a). This sug-

gests decreased rifting and the onset of increased

thermal subsidence (Hinsken 2003; Rotstein et al.

2005). The Foraminifera Marl Member (Foraminifer-

enmergel) at the base is overlain by the black shales of

the Fish Shale Member (Fischschiefer). Laterally both

pass into calcarenites of local origin at the southern
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Fig. 5 Stratigraphic chart
illustrating the Cenozoic
evolution of the southern
URG and northern Jura
Mountains (modified after
Giamboni et al. 2004 and own
observations; numerical ages
after Gradstein et al. 2004).
The Salt Formation
constituting the majority of
graben fill in the southern
URG represents the syn-rift
sediments
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end of the graben, the Marine Sand Member, inter-

preted as littoral facies (Meeressand; Fischer 1969). A

rich fauna indicates open marine conditions and water

depths of more than 200 m (Huber 1994). Up-section,

the Meletta Shale Member (Melettaschichten) contains,

particularly in its lower part, Alpine-derived Molasse-

type sandstones, implying a connection with the

‘‘overfilled’’ Molasse Basin (Kuhlemann et al. 1999).

Decreased faunal diversity implies prevailing deposi-

tion under brackish-marine conditions, but still with

water depths of about 100 m (Huber 1994). The over-

lying Cyrena Marl Member (Cyrenenmergel) accumu-

lated under marine, brackish and freshwater

conditions. Towards the Jura it interfingers with fluvio-

deltaic Molasse-type sandstones of the Alsacian Mo-

lasse Member (Elsässer Molasse), which are correlated

with the Lower Freshwater Molasse (Kuhlemann et al.

1999).

Freshwater sedimentation prevailed inside the URG

until the end of the Oligocene (Rollier 1911). Relics of

these almost completely eroded deposits have been

described from the Potash Basin, the SE part of the

graben (Tüllingen Beds; Tüllinger Schichten) and the

Jura Mountains (Delsberg Limestone; Calcaires Déle-

montiens); there, deposition continued until the Early

Miocene (Berger et al. 2005a).

Sediments of Early Miocene age have not been

found in the southern part of the URG, whereas

approximately 1 km thick brackish deposits are pre-

served in the northern URG implying increased sub-

sidence there (Derer et al. 2003). It is still a matter of

debate, to which extent the lack of sediments younger

than Early Aquitanian in the southern URG is due to

non-deposition (discussed by Schumacher 2002) and/or

major erosion after the Early Miocene (e.g. Sissingh

1998; Lutz and Cleintuar 1999). However, major sedi-

ment accumulation after the Early Miocene is highly

unlikely for the following reasons:

1. The (Burdigalian) Upper Marine Molasse of the

Alpine foreland basin wedges out towards the

north within the Jura Mountains (e.g. Berger et al.

2005a), suggesting that the southern URG was

uplifted above the regional base level during this

time.

2. The Middle Miocene volcanics of the Kaiserstuhl

rest unconformably on faulted and deeply trun-

cated Late Oligocene sediments (Wimmenauer

1977).

3. Salt diapirs are restricted to the Lower Salt Sub-

Formation (e.g. Larroque and Ansart 1984; Blanc-

Valleron and Schuler 1997). As the development

of diapirs requires a considerable overburden, the

lack of diapirism within the Upper Salt Sub-For-

mation implies that Neogene sediments did not

accumulate in considerable thickness (>100 m).

4. High resolution reflection seismic data recorded on

the river Rhine show a major erosional unconfor-

mity between the Plio-Pleistocene gravels and the

Palaeogene graben fill sediments (P. Ziegler, per-

sonal communication).

5. Mean random vitrinite reflectance (%Rr) mea-

sured on Oligocene samples from the southern-

most URG and the Delsberg Basin indicate low

thermal maturity (Todorov et al. 1993).

During the Middle Miocene, the area of the south-

ern URG was emergent due to lithosphere-scale fold-

ing contemporaneous with volcanic activity in the

Kaiserstuhl (e.g. Ziegler et al. 2004). The concomitant

uplift and exhumation of the graben shoulders is doc-

umented by conglomerates of Middle Miocene age, the

so-called ‘‘Jura Nagelfluh’’, which were transported

southward into the northern Jura (e.g. Laubscher 2001;

Berger et al. 2005a). However, the lack of Early Mio-

cene deposits in the southern URG implies that uplift

could have already started in the Early Miocene

(Schumacher 2002).

During the Late Miocene to Early Pliocene the Jura

was thrust and folded (Kälin 1997; Becker 2000;

Giamboni et al. 2004). During the Early Pliocene

(4.3 Ma), Alpine rivers entered the southern URG at

its southeastern corner, flowed to the west and drained

via Bresse and Rhone Grabens into the Mediterra-

nean, depositing the so-called ‘‘Sundgau-Gravel’’

(Manz 1934). During the Late Pliocene drainage

changed to the modern pattern (Villinger 1998;

Giamboni et al. 2004).

Syn-rift sedimentation

The Salt Formation comprises the syn-rift sediments of

the southern URG, whereas the overlying Grey Marls

probably represent the late syn-rift or even the post-rift

stage (e.g. Rotstein et al. 2005). The Salt Formation

consists of three sub-formations and several members

(Fig. 5; see also Fig. 12). Due to the rarity of fossils

several stratigraphical subdivisions based on lithologi-

cal criteria have been established (see Schuler 1990).

Strong intrabasinal variations of accommodation

space, sediment supply as well as obvious base level

fluctuations led to distinct facies changes and to the

recurrent appearance of the same facies at several

levels. Previous lithostratigraphical subdivisions re-

main, therefore, highly questionable and need to be
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revised. A sequential concept was developed by Du-

ringer (1988) for the conglomerates and by Blanc-

Valleron (1991) for the evaporites of the southern and

middle URG. Derer et al. (2003) applied a genetic

concept to the Late Eocene to Early Oligocene syn-rift

deposits within the northern URG.

Lithofacies associations

Several lithofacies associations (LFAs) formed recur-

rently in the different domains of the southern URG

during the late Middle Eocene to Early Oligocene

(Fig. 6). The following LFAs are distinguished:

Conglomerate LFA (alluvial fan); it forms a belt of

alluvial fans along the margins of the southern URG

(Duringer 1988). The conglomerates are mainly com-

posed of Mesozoic limestone clasts that were eroded

from the graben shoulders. Palaeocurrent directions

imply transport towards the basin centre (Fig. 6).

Continuous uplift and erosion of the graben flanks is

documented by a stratigraphically inverse pebble

petrography. The conglomerates interfinger with

littoral sandstones and sometimes with variegated

marls (Duringer 1988).

Variegated Marl LFA (alluvial plain); variegated

marls are widespread in the uppermost part of the Salt

Formation. In the lower part they are restricted to the

marginal areas of the basin; they are reddish in colour

and interfinger with thin conglomerates and probably

represent alluvial plain deposits. In the basin centre,

greenish, greyish and brownish colours suggest poorly-

drained conditions.

Calcareous sandstone LFA (marginal lacustrine); it

occurs basinward of the conglomerate fans. The sand-

stones are interbedded with variegated marls, lacus-

trine limestones and sometimes lignites. These deposits

are called ‘‘Haustein’’ (Förster 1892); in this study the

term ‘‘Haustein Facies’’ is used. It occurs along the

margins of the basin, particularly in the southern

graben domain. The depositional environments range

from high-energy littoral settings, where cross-bedded,

sometimes oolitic packstones are found, to low-energy

deposits, including oncolites, stromatolites, fluvio-

deltaic wackestones and reed remains (Duringer and

Gall 1994).

Fig. 6 Palaeogeographic map illustrating late Middle Eocene to
Early Oligocene syn-rift sedimentation within the southern URG
(modified from Duringer 1988; Blanc-Valleron 1991; own
observations). A limno-terrestrial facies is found in the south-
ernmost part of the graben and in the Freiburg Embayment
comprising fluvial to shallow-water sediments (Calcareous
Sandstone Lithofacies Association (LFA), Lacustrine Limestone

LFA), whereas the basin centre yields a thick sequence of marls
and evaporites. Erosion of the rift flanks is documented in
alluvial fans, which formed along the graben margins. Crystalline
basement has been exhumed along the crest of the masterfault
footwall during the Early Oligocene. Outcrops: Kan Kandern,
Klk Kleinkems, Ist Istein, Tag Tagolsheim, Alt Altkirch
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Lacustrine limestone LFA (mainly shallow lacus-

trine); it occurs predominantly in the southern part of

the graben, where it dominates the lower parts of the

Salt Formation (‘‘Melania Limestone’’, ‘‘Planorbis

Limestone’’). It often formed in the vicinity of the

Haustein Facies. Oncolites, stromatolites and remains

of characeans and reeds document a shallow lake set-

ting (Stucky 2005). Often these deposits were pedog-

enetically overprinted (Stucky 2005) and, hence, are

assigned to a palustrine facies (sensu Wright and Platt

1995). Towards the basin centre these limestones in-

terfinger with grey to greenish marls.

Laminite LFA (moniolimnion of meromictic lake);

it comprises rhythmically thin-bedded, laminated marls

and lithographic limestones containing subordinate

intercalations of grey, homogeneous marls. The lami-

nites occur in the internal parts of the basin. Towards

the basin margin, laminites interfinger with Haustein

Facies (see below Fig. 8), as well as with lacustine

limestones (well Heimersdorf 101; Vonderschmitt

1942). Several intervals contain monospecific mass

occurrences of euryhaline taxa, insects and terrestrial

plant remains (e.g. Förster 1892; Wappler et al. 2005).

Especially the ‘‘Fossiliferous Zone’’, in the upper part

of the Middle Salt Sub-Formation, represents a marker

horizon, that can be traced almost basin-wide (Wap-

pler et al. 2005).

Because the laminites are closely associated with

evaporites (Förster 1892), they are assigned to a

saline facies. They are interpreted to have been

deposited in an open-water environment during a

meromictic lake stage, when stagnant, highly saline,

oxygen-depleted waters filled the deep part of the

basin (moniolimnion), overlain by an almost pure

freshwater lens (mixolimnion, Hofmann et al. 1993;

Hinsken 2003). As permanent stratification of a water

body requires a minimum water depth of several tens

of metres (e.g. Wetzel 1991; Talbot and Allen 1996),

the laminites are thought to represent a deepwater

facies.

Grey and Green Marl LFA (e.g. open lake-brack-

ish); it is the dominant lithology in the central part of

the basin. It is interpreted as an open lake facies.

However, it is not always possible to distinguish this

facies from that of the Variegated Marl LFA in the

sparse well-reports. Faunal remains indicate oscilla-

tions between an evaporitic and a freshwater environ-

ment (Blanc-Valleron and Schuler 1997).

Evaporite LFA (salt lake); it occurs in the Potash

Basin and consists of gypsum, anhydrite, halite, and

some potash salts (Fig. 6), that are generally inter-

bedded with marls. The evaporites of the Middle and

Upper Salt Sub-Formations preserve depositional fea-

tures (Sturmfels 1943), whereas the evaporites of the

Lower Salt Sub-Formation have been partly deformed

by halokinesis (Blanc-Valleron and Schuler 1997). The

potassium salts occur only within some seams at the

base of the Upper Salt Sub-Formation and are re-

stricted to the deepest part of the Potash Basin (see

below).

Basin-fill architecture

The distribution of the different LFAs in space and

time is used to outline the basin fill architecture

(Figs. 6, 7, 8, 9, 10, 11). This is illustrated by a palaeo-

geographical map showing the distribution of charac-

teristic lithofacies associations (Fig. 6), a few outcrop

sections (Figs. 8a, 9), well sections (Figs. 9, 11) and

cross-sections (Figs. 7, 8b, 10). The cross-sections

shown in Fig. 7 and 10 are based on subsurface data.

Basin margin; the graben margins are characterized

by a sharp termination of the Salt Formation against

growth faults or extensional flexures, whereas the Grey

Marls seem to onlap the Dinkelberg Block (Fig. 7; well

Riehen and well Reinach).

Conglomerates attributed to the Middle and Upper

Salt Sub-Formations are exposed about 15 km to the

north near Kandern (Fig. 8a), where they unconform-

ably rest on Mesozoic sediments, that have been af-

fected by an extensional flexure (Fig. 8b). Based on

fossils these lower intervals are allocated to the ‘‘Fos-

siliferous Zone’’ (Hinsken 2003; Stucky 2005). The

clastics are covered by the open marine Grey Marl

Formation. At the top a major stratigraphic gap occurs

which is overlain by Neogene gravels.

Basel Block and Sierentz Block; sediment thickness

of the individual stratigraphic units varies across faults

implying sedimentation contemporaneous with fault-

ing. Across these blocks sediment thickness increases

towards the footwall testifying to a half graben setting,

whereas the sedimentary facies on the individual

blocks was quite uniform (Fig. 7). The separation of

the Basel Block and Sierentz Block by the Allschwil

Fault Zone probably occurred relatively late during the

deposition of the Middle Salt Sub-Formation. This

fault zone displaces a unit of Eocene lacustrine lime-

stone that partly has been eroded on the footwall crest

(well Allschwil 1, Schmidt et al. 1924). The crest area

of the tilted Sierentz Block exhibits a shift towards a

proximal facies and a drastically reduced sediment

thickness (well Knoeringue). Further south, the Salt

Formation is replaced by a hiatus (Ustaszewski et al.

2005a; well Sundgau 201).

Two major sections expose the Altkirch Block

footwall crest (Fig. 9): At Tagolsheim about 40 m pe-
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dogenetically modified lacustrine ‘‘Melania Lime-

stone’’ are covered by the laminites of the ‘‘Fossilif-

erous Zone’’. At Altkirch the laminites of the

‘‘Fossiliferous Zone’’ are overlain by the ‘‘Haustein’’,

which has been strongly affected by pedogenesis. The

lowermost part of the Haustein shows an oolitic facies

and includes intra- and extraformational pebbles.

Istein Block; the facies changes observed on the

Basel and the Sierentz Block in wells are exposed on

the Istein Block (Fig. 8a). Conglomerates interfinger

with sandstones, laminites and limestones. The ‘‘Istein

Graben’’ locality (e.g. Wittmann 1952) also exposes

oolitic calcareous sandstones containing Mesozoic

clasts, interbedded with conglomerates derived from

Middle and Late Jurassic rocks and laminated car-

bonates preserving the characteristic fauna of the

‘‘Fossiliferous Zone’’. They are covered by variegated

marls and conglomerates.

Fig. 8 Geological situation in
the marginal part of the basin
illustrated by three sections a
from the SE basin margin
(location see Fig. 6). Coarse
conglomerates at the graben
margin prograde b\asinward
into lacustrine deposits. At
the borderfaults the
conglomerates rest
uncoformably on an
extensional flexure (b)
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In the ‘‘Kleinkems South’’ section Late Jurassic

limestones unconformably overlain by palaeosols are

covered by variegated marls including reworked relicts

of lacustrine ‘‘Melania Limestone’’. Conglomeratic

calcareous sandstones follow above another erosional

unconformity. They grade upward into the laminites of

the ‘‘Fossiliferous Zone’’. The section ends with con-

glomerates.

Dannemarie Basin; at the south of the Dannemarie

Basin the facies is similar to that on the Altkirch and

the Sierentz Blocks (Fig. 7). Sediment thickness con-

tinuously increases towards the north (Fig. 10). Gyp-

siferous marls become the prominent lithology while

lacustrine limestones and ‘‘Haustein Facies’’ are dras-

tically reduced in thickness (Fig. 11; Brechaumont

well).

Potash Basin; further north, near Mulhouse, the fa-

cies changes abruptly. The occurrence of halite and

potash salts characterizes the transition towards the

Potash Basin. The fill of the central part of the Potash

Basin is well documented (Fig. 11; well Staffelfelden 8/

9). Three major evaporation cycles can be distin-

guished. The cycles show massive halite at the base,

which is repeatedly interbedded with marls (second

mesozoic

Fig. 9 Sections exposed at
the crest of the tilted Altkirch
Block (for location see Fig. 6)
correlated with the
Heimersdorf well (Fig. 7).
The Tagolsheim section
(modified from Stucky 2005)
exposes the ‘‘Melania
Limestone’’ of Middle–Late
Eocene age. The Altkirch
quarry exposes laminites and
the ‘‘Haustein’’ (Calcareous
Sand LFA) in the top.
‘‘Melania Limestone’’ and
‘‘Haustein’’ are marginal
lacustrine sediments that have
been pedogenetically
overprinted
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order cycles) that become prominent towards the top

of a cycle.

Palaeogeography

The environmental setting in the southern URG

changed repeatedly between lacustrine, brackish and

evaporitic. It is still a matter of debate, whether the

southern URG was connected to the ocean during

deposition of the Salt Formation or not (e.g. Wappler

et al. 2005). Benthic foraminifera, dinoflagellate cysts,

nanoplankton and bryozoans in several intervals of the

Middle Salt Sub-Formation imply a marine influence

(Förster 1892; Martini 1995; Blanc-Valleron and

Schuler 1997). However, these taxa have been reported

also from saline lakes (e.g. Tappan 1980; Rauscher

et al. 1988; Fontes et al. 1991; Pawlowski and Holz-

mann 2002). The fauna is of low diversity and charac-

terized by monospecific mass occurrences of

opportunistic species indicating a rather restricted

environment (Hinsken 2003). In addition, no euhaline

marine macrofossil has yet been found (Fontes et al.

1991). Furthermore, the continuous rim of fluvial

conglomerates around the basin (Wagner 1938; Du-

ringer 1988; Derer et al. 2003) contradict a fully marine

setting. The facies association in the southern URG

(Figs. 6, 7, 10) points to a typical continental evaporite

basin with freshwater limestones surrounding the

evaporites in the centre, as was described, for instance,

in the Piceance Creek Basin (Green River Formation;

Cole and Pickard 1981). Consequently, facies distri-

bution and palaeoecology support the interpretation

that the Salt Formation was at least for its major part

deposited in a restricted to enclosed environment in a

continental setting.

Flank uplift

The amount of graben-shoulder uplift can be estimated

from pebble petrography. The local changes of the

pebble petrography within the Conglomerate LFA

along the Vosges, Black Forest and Jura Mountains

suggest differential uplift of the rift flanks (e.g. Du-

ringer 1988; Fig. 6). Strongest uplift occurred in the

Vosges, where erosion reached the crystalline base-

ment already during Early Oligocene (Upper Salt Sub-

Formation). At the same time erosion in the Black

Forest cut down to the Middle Triassic. In the northern

Jura, erosion affected only Late Jurassic limestones.

The uplift pattern derived from pebble composition is

inverse to the subsidence pattern: in cross-section, the

graben is deepest, where the flanks have been uplifted

the most (deepest erosional truncation), like along the

western rim of the Potash Basin.

Sediment source

Most of the graben-fill sediments were delivered from

the graben flanks (e.g. Roll 1979). Only little sediment

was derived from the Jura representing the Alpine

forebulge during the Late Eocene (Kempf and Pfiffner

2004). However, sediment input from the north (e.g.

Gaupp and Nickel 2001) might have occurred due to

Fig. 11 Wells within the Dannemarie Basin and the Wittelsheim
Sub-Basin (for location see Figs. 6, 10) show the facies
distribution in the internal graben domains. The Staffelfelden
8/9 well-log resembles the stratigraphical reference section of the
Salt Formation and the underlying Middle Eocene. According to
correlation by resistivity well-logs and application of a base-level
concept, the major cycles can be traced throughout wide parts of
the basin
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the erosion on the Rhenish Massif (see Ziegler 1990).

The southward increase of evaporites and the carbon-

ate facies along the southernmost graben margins point

to clastic supply from the north, rather than from the

south.

The composition of the lacustrine deposits in the

southern graben is largely controlled by the lithology in

the catchment area (e.g. Talbot and Allen 1996). The

Mesozoic strata along the rift flanks probably sup-

ported carbonate sedimentation at the lake margins

and marl accumulation in the open lake. Erosion of

Triassic evaporites is regarded to be the main source

for the salts (e.g. Gale 1920; Duringer 1988; Fontes

et al. 1991), as pebbles of the Triassic salt-bearing

strata are frequently found within the Conglomerate

LFA, and the amount of halite dissolved on the graben

shoulders exceeded that deposited in the graben

(Blanc-Valleron 1991). Furthermore the isotopic

composition of gypsum suggests a Triassic rather than

a Tertiary marine origin (Fontes et al. 1991).

Sediment partitioning and A/S-ratio

The facies distribution within the southern URG was

strongly affected by accommodation space as well as

sediment supply (Figs. 6, 7, 10). As accommodation

space was often filled up to the base level, especially at

the margins of the basin, sediment partitioning played

a major role during the filling of the basin. Therefore,

the ratio of accommodation space (A) and sediment

supply (S), the A/S-ratio, was the main factor control-

ling sediment partitioning and facies distribution.

Low A/S-ratio at graben margins; high sediment

supply from the rising flanks, but low subsidence led to

the formation of wedge-shaped conglomerate and

sandstone bodies along the graben borders. Locations

of major sediment infill appear to be spatially related

to active transfer zones and the intersection of reacti-

vated lineaments (see below). A large fan delta system

developed west of Mulhouse (e.g. well Michelsbach,

well Guewenheim) between the Dannemarie Graben

and the Wittelsheim Sub-Basin in front of the recent

valley of the river Thur, which follows a major linea-

ment.

The central Potash Basin was bordered by a con-

glomerate belt sometimes only a few hundreds of

metres wide (e.g. Schreiner 1977). This points to a low

sediment input in front of the strongly uplifted foot-

walls along the margins of the Potash Basin. Intrafor-

mational pebbles of lacustrine limestones along the

graben margins (e.g. Kiefer 1928; Genser 1959; Fig. 8a)

point to sediment cannibalism during times of low

base-level.

Medium A/S-ratio on intrabasinal swells; low subsi-

dence and low sediment input characterize the intra-

basinal highs. Similarly, the crests of tilted blocks re-

ceived little or no clastic sediment. At such sites car-

bonates dominate (Figs. 8, 9, 10) and sometimes even

oolite shoals formed. Frequently, the deposits became

exposed (during low base-level) and were subject to

pedogenesis (Fig. 9).

High A/S-ratio in the Potash Basin; in the Potash

Basin at high subsidence rates the sediment input was

on average low (Fig. 11). Evaporites formed during

Fig. 12 Facies diagram
illustrating the interpreted
basin-fill architecture and the
major base-level cycles of the
Eo-Oligocene syn-rift
sediments in the southern
URG
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times of increased aridity and there was almost no

terrigenous supply. Marls accumulated during rela-

tively humid periods.

Age constraints

The age of the members of the Salt Formation has not

been well established yet because of sparse and

equivocal biostratigraphical data (e.g. Berger et al.

2005b; Wappler et al. 2005; Fig. 12). A maximum age

of the Lower Salt Sub-Formation can be estimated by

the Lutetian age (zone MP13-14) of the basal Sidero-

lite Formation and Buchsweiler Formation (e.g. Berger

et al. 2005b). The gradual transition from the Sidero-

lite Facies to the Green Marl Facies reported from

many drill holes contradicts a postulated Bartonian

unconformity within the southern URG (e.g. Sissingh

1998; Schumacher 2002). A mammalian fauna recently

discovered in the lower part of the ‘‘Melania Lime-

stone’’ at Tagolsheim (Stucky 2005) has provided a

preliminary age of stage MP 17-18 corresponding to

the Early Priabonian (B. Engesser, personal commu-

nication). Thus, the oldest part of the Lower Salt Sub-

Formation must be Bartonian or even Lutetian in age

(see Fig. 9).

The low diverse, but abundant nanoplankton com-

munity within the upper part of the Middle Salt Sub-

Formation in the ‘‘Fossiliferous Zone’’ can be corre-

lated with the Middle Pechelbronn Beds and, hence,

implies an Early Oligocene age (Martini 1995). Mam-

malian remains from the ‘‘Haustein Member’’ at Alt-

kirch provide an Early Oligocene age (MP 21; B.

Engesser, personal communication). A minimum age

of the Upper Salt Sub-Formation is given by the

overlying Foraminifera Marls that belong to Nano-

plankton Zone NP ?22–23 (middle Rupelien; Berger

et al. 2005b).

Further age estimates rely on the correlation with

strata in the middle and northern URG. The Green

Lymnea Marls (Middle Eocene) are seen as correlative

with the Lower Salt Sub-Formation (e.g. Berger et al.

2005b). The Lower Pechelbronn Beds are correlated

with the lower part of the Middle Salt Sub-Formation

and represent the Late Eocene (e.g. Berger et al.

2005b). The Middle Pechelbronn Beds are regarded to

have a Late Eocene to Early Oligocene age (Gaupp

and Nickel 2001). The Upper Pechelbronn beds are

correlated with the Upper Salt Sub-Formation and

point to an Early Oligocene to Middle Oligocene age

(Gaupp and Nickel 2001).

As the deposition of the Salt Formation appears to

be climatically controlled, enhanced evaporation in

neighbouring basins, in particular the Paris Basin,

provide useful additional information (e.g. Blanc-Val-

leron 1991). Based on the biostratigraphical results,

Salt I might correspond to the Lutetian-Bartonian

evaporation cycle in the Paris Basin, Salt II and Salt III

to the Late Priabonian evaporation cycles during which

the ‘‘Gypse de Montmartre’’ formed (see Rouchy

1997).

Sedimentary dynamics and base-level fluctuations

Tripartite lake model

Because of the great variability of environmental set-

tings and the disputed connection to the ocean the

base-level concept was chosen to subdivide the

deposits of the Salt Formation. However, instead of the

classic correlation of A/S-ratio cycles (sensu Cross and

Lessenger 1998) the base-level concept of a triple stage

lake model was applied (Bohacs et al. 2000). This ap-

proach represents a slight modification of the classical

base-level concept, which better fits the palaeogeo-

graphic conditions in the southern URG. The tripartite

lake model (sensu Bohacs et al. 2000) distinguishes

between overfilled, balanced and underfilled basin

mode.

During an overfilled basin mode the base-level was

high due to decreased subsidence or increased supply

of water and sediment; a freshwater lake formed in the

basin. Carbonates accumulated along the margins and

marls in the central part.

During an underfilled basin mode base-level was low

due to increased subsidence and/or decreased supply of

water and sediment. Evaporites accumulated in the

basin centre. Distinct alluvial fans developed on the

graben margins, favoured by extended slopes. The

marginal parts of the basin were characterized by

deposition of variegated marls or the formation of

palaeosols.

A balanced basin mode occurred during transitional

periods. Water stratification resulted from superficial

freshwater inflow onto a saline brine and led to a

meromictic lake stage. Carbonate sedimentation

dominated in shallow lake areas. A base-level fall re-

sulted in fan delta progradation, while base level rise

resulted in fan delta retreat (Duringer 1988).

Cycles

Three major evaporation cycles formed in the Potash

Basin (Figs. 11, 12). Each cycle starts with thick halite

beds, which decrease in abundance and thickness to-

wards the top, and finally grade into marls. They rep-

resent first order base-level rise cycles, which define the
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Lower, Middle and Upper Salt Sub-Formations.

According to the stratigraphic age estimates, each cy-

cle may have had a duration of approximately 3 My.

Major fining-upward cycles at the graben borders are

correlated with the base-level rise cycles of the sub-

formations.

Second order cycles are expressed by interbedding

of single layers (e.g. halite, marl) and show a drastically

reduced, probable allocyclically controlled frequency

(Blanc-Valleron 1991). Along the basin margins and on

intra-basinal highs first order cycles are often asym-

metrically developed and show dominantly base-level

rise tendency, whereas base-level falls seem to be

represented by an unconformity (Fig. 8). Cycles as well

as facies along the margins of the basin are well cor-

relatable with the strata of comparable thickness

within the northern URG (see Derer et al. 2003). To-

wards the basin centre lower order cycles become

increasingly pronounced. The subcycles exhibit a ten-

dency towards symmetrical base-level cycles.

Although the three salt sub-formations are similar

with respect to the general trends, they show consid-

erable differences in their depositional style.

The Lower Salt Sub-Formation is characterized by

greyish to greenish marls and evaporites in the basin

centre as well as abundant limestones in the marginal

parts. Lateral sediment supply was low. Laminites are

restricted to the depo-centres. A relatively low relief

and moderate basin subsidence is suggested for the

Lower Salt Sub-Formation.

The Middle Salt Sub-Formation is characterized by

increased clastic supply from the graben shoulders,

abundant carbonate sedimentation on swells and

abundant ‘‘deep-water’’ laminites within the basin. All

these features point to the formation of a distinct relief

and thus to enhanced subsidence.

The Upper Salt Sub-Formation records a basinward

progradation of clastic wedges in its lower part and a

transition towards a fluvio-terrestrial environment in

the higher parts. Both trends imply a transition towards

an overfilled basin and indicate peneplainisation of the

relief due to decreased rifting.

Tectonic implications

The spatial distribution of facies and sediment thick-

nesses provides some information about subsidence.

Little shifting of syn-rift facies belts implies uniform

subsidence and a pure extensional stress regime with a

constant extension direction during such a period.

However, in the southern graben a shift of the area of

maximum subsidence from W to E is observed, which

has been interpreted to have resulted from a transition

from oblique to orthogonal extension (Schumacher

2002). Syn-rift sediment thicknesses and facies changes

suggest that subsidence was strongest in the Potash

Basin and decreased towards the southern and north-

ern graben domains.

Long-term changes (several My) of the depositional

setting are interpreted to be of tectonic origin. Theo-

retically, increased rifting results in distal facies in the

basin centre and proximal facies along the borders.

Decreased rifting leads to propagation of marginal fa-

cies basinwards (decrease in accommodation space).

Therefore, the Middle Salt Sub-Formation, character-

ized by deep-water environments in the basin interior

and the onset of strong clastic supply from the graben

shoulders, probably represents the climax of rifting.

Formation of the southern Upper Rhine Graben

Basin geometry

The width of the southern URG has been determined

by locating its break-away faults and by measuring it

parallel to the Palaeogene extension direction (mean

azimuth of 095�; Ustaszewski et al. 2005a), which is

more or less perpendicular to the graben’s strike

(Fig. 6). The graben width varies between 63 km in its

southernmost part near Basel, 35 km in the area of the

Potash Basin to the north of Mulhouse, and about

‡50 km in the area of Colmar. This along-strike change

in rift width is accompanied by a change of graben

depth (Cloos 1939), and sedimentary facies (Figs. 3, 6).

Within this context it is important to recall that the

development of the URG was pre-determined by (the

reactivation of) pre-existing Late Palaeozoic crustal

discontinuities.

Extension, graben width and subsidence

The amount of extensional displacement (DL) across

the URG is in the order of 5 km, as estimated from

several cross-sections (see below). This value appears

to be constant along the entire graben (Sittler 1969;

Laubscher 1970; Doebl and Teichmüller 1979; Villemin

et al. 1986; Durst 1991; Brun et al. 1992). However, as

the present day, ‘‘final’’ rift width (Lf) varies along

strike, DL is partitioned over a variably wide zone in

the different graben segments. Therefore, differences

in the initial rift width (L0) are responsible for varia-

tions in the crustal stretching factor (b), which mainly

controls the extensional-basin subsidence (Allen and

Allen 2005).
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b can be calculated from DL and is related to L0 by

b ¼ DL=L0 þ 1: ð1Þ

DL and observed Lf are related by

L0 ¼ Lf � DL: ð2Þ

Substituting Eq. 2 into 1, b can be alternatively ex-

pressed as:

b ¼ DL=ðLf � DLÞ þ 1: ð3Þ

In this equation the direct dependence of b and the

observed Lf can be shown, especially if DL stays con-

stant along strike of the graben.

Moreover, graben-subsidence is related to the

compensation depth of extensional faulting (Zd; depth

to detachment sensu Groshong 1996), which is gener-

ally associated with the sole-out level of listric faults

forming on a common detachment. This can be shown

by rift volume balancing (Fig. 13a).

Rift volume balancing (e.g. Groshong 1996) is an-

other method to calculate DL independently from line

length balancing (retro-deformation) of a cross-section

(if Zd is known), or to estimate Zd (if DL is known)

using the graben volume VR (Fig. 13a). In cross-sec-

tion, VR is defined as the so-called ‘‘lost area’’ (Alost;

Groshong 1996) between the pre-rift and the present

position of a reference level (e.g. top of basement). If

the rock volume did not change (i.e. if volcanism is

excluded), the ‘‘lost area’’ equals the so-called ‘‘won

area’’, which compensates the displacement above Zd.

Zd and DL are related by:

Zd ¼ Alost=DL: ð4Þ

Assuming that DL and Zd (and thus Alost) of the

evolving graben remain constant along its strike, then

depocentres evolve within narrow graben segments

(small L0, high b), whereas shallow basins develop in

the wide parts of the graben (large L0, low b; Fig. 13b,

14a; Eq. 3).

The same effect occurs in the case of block tilting

(Fig. 14), which frequently occurs in lithospheric-scale

extensional basins (e.g. Leeder and Gawthorpe 2002)

and that is generally regarded to be the surface

expression of listric faulting, soling out on a common

detachment at Zd. Block tilting therefore enables the

rift volume to be balanced if DL is partitioned over a

variable rift width and among a variable number of

fault-bounded tilted blocks (Figs. 14b).

Extension in the URG

To test the hypothesis developed above, DL, Alost and

Zd were estimated from two cross-sections in the study

area (Fig. 4). DL was measured along the top of the

pre-Mesozoic basement. Alost was constructed using

the same reference level, and a top-line connecting

both break-away faults at reference level, as is shown

in Fig. 14b. For section B–B¢, located in the shallow

southernmost part of the URG (Figs. 3, 4), line-length

balancing yielded a DL of 4.2 km (Ustaszewski 2004).

This value appears to be very reliable, because the

Fig. 13 Effect of rock volume
balance at constant extension
DL. a Rift basin subsidence
depends largely on graben
width Lf (i versus ii) and
depth to detachment Zd

(i versus iii). b Consequently
an axial depo-centre develops
in a narrow rift zone, if DL
and Zd are constant
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reference horizon can be traced over most of this cross-

section. For section A–A¢, the base of the Mesozoic

was first extrapolated over the crests of the graben-

shoulders, assuming negligible basement erosion there

(in agreement with Paul 1955). Line-length balancing

for section A–A¢ yields a DL of about 4.5 km. Mea-

surement of Alost provides 111 km2 in cross-section B–

B¢, while it results in 121 km2 for cross-section A–A¢.
Using Eq. 4, Zd yields almost 27 km for both cross-

sections. The values estimated for both cross-sections

are in a reasonable agreement. However, DL and Alost

are about 10% less in cross-section B–B¢.
The calculated Zd values are in a good agreement

with the Moho-depth of about 27 km in the area

adjacent to the URG (see Dèzes et al. 2004). This

suggests that the whole crust was affected by brittle

tectonics and the compensation depth of extensional

faulting is located in the proximity of the Moho (in

agreement with Groshong 1996). Indeed, the crustal

configuration of the URG (Brun et al. 1992) and the

occurrence of earthquakes almost down to the Moho in

its southern parts (Plenefisch and Bonjer 1997) imply

that the crust behaves in a brittle manner at present.

The observed strong syn-rift uplift of the graben flanks

is compatible with flexural rebound due to a very deep

level of necking (see Kooi and Cloetingh 1992) located

within the upper mantle and proves the assumption

that the entire crust was affected by brittle tectonics

during Palaeogene extension.

In order to get further information about extension

in the URG, Alost was measured from several pub-

lished cross-sections (Fig. 15; Table 1) and the calcu-

lated Zd of 27 km was used to estimate DL (Eq. 4). All

cross-sections show a similar Alost of about 120 km2

and point to a constant extension of about 4.5 km.

However, isostatic flexural rebound affects Alost and

the measured values might be slightly underestimated

(calculated DL to small). DL directly measured from

seismic sections (line length balancing), may also be
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Oden-
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 accord. to 
Tab. 1)

A
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Fig. 15 Location of cross-sections mentioned in Table 1. Section
1 from Wenzel et al. (1991), section 2 and 3 from Doebl and
Teichmüller (1979), section A–A¢ this work, section B–B¢ from
Ustaszewski (2004)

Fig. 14 Effect of block tilting
on extensional basin
formation, where DL is
partitioned among several
normal faults heaves (dl);
a map view, b cross-sections.
A symmetrical tilt-block
graben of constant DL
develops a local depo-centre
and highest graben shoulder
uplift in a narrow rift zone,
especially if the graben opens
splay-like (cross-section a).
Thereby the graben volume
and the dip of normal faults
are almost constant. Small
letters refer to cross-sections
marked in (a)
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somewhat smaller than the actual value because small-

scale faults are below the resolution and therefore not

taken into account. The real DL may be marginally

higher and a DL of 5 km appears to be a realistic value

for the Cenozoic URG.

Rift basin formation

Obviously, the Potash Basin is located in the deepest

and narrowest part of the southern URG (Lf � 35 km)

for which a high average stretching factor (b � 1.14)

has been determined (sect. 3 in Fig. 16). This depo-

centre was already bordered during the Palaeogene by

strongly elevated rift flanks. Therefore, the Potash

Basin is regarded as a narrow basin with a relatively

high b value.

To the north, the Potash Basin shallows and narrows

as the graben, including the shallow Freiburg Embay-

ment, widens to Lf � 43 km (‘‘2’’ in Fig. 16) near

Freiburg. This suggests that in this area DL was parti-

tioned over a wider zone and a larger number of faults

than in the central parts of the Potash Basin. North of

Freiburg, where the Elzach Fault branches off from the

Black Forest Border Fault, the rift zone widens to

Lf � 55 km (at N-end of Elzach Fault) whilst the URG

shallows, forming the Colmar Swell (‘‘1’’ in Fig. 16).

South of Mulhouse (‘‘4’’ in Fig. 16), the URG

widens from Lf � 41 km to Lf � 63 km across the

Kandern-Hausen Fault. This increase in graben width

coincides with a distinct decrease in the thickness of

Palaeogene syn-rift sediments and a pronounced

change from the Potash Basin deep-water and/or

evaporite facies to the shallow-water and/or terrestrial

facies domain of the southernmost URG. This part of

the graben is characterized by an average stretching

factor (b � 1.07) and is thus regarded as a low-b basin,

consisting of several tilted blocks (Fig. 4b). South of

the Kandern-Hausen Fault, the elevation of the Black

Forest rift flank decreased during the Palaeogene rif-

ting phase, as evidenced by a change in the pebble

petrography and the flow directions of alluvial fans in

the Kandern area (Fig. 17). The Kandern Fan pro-

graded westward and contains Middle Jurassic to

Middle Triassic pebbles, reflecting strong uplift of the

hinterland being located to the north of the Kandern-

Hausen Fault. By contrast, the Holzen Fan and Ham-

merstein Fan prograded north- and north-westward

and contain only Late Jurassic pebbles. This indicates

decreased uplift of the hinterland, which was located

south of the Kandern-Hausen Fault, and strong subsi-

dence of the graben north of this fault.

Still further south, the diffuse sinistrally transtensive

Rhine-Bresse Transfer Zone (RBTZ; Laubscher 1970;

Illies 1981; Lacombe et al. 1993; Ustaszewski et al.

2005b) extends from the Wehra-Zeiningen Fault Zone

in the east to the northern part of the Bresse Graben

near Dijon in the west and beyond into the Massif

Central over a distance of more than 200 km (‘‘5’’ in

Fig. 16). This transfer zone is regarded as a very wide,

obliquely rifted domain (Illies 1981) that is character-

ized by a very low stretching factor (b � 1.02). This

interpretation is compatible with the local occurrence

of monocline-bounded basins (e.g. Delsberg Basin)

containing only thin Late Eocene and Early Oligocene

sediments within the domain of RBTZ (Laubscher

1998; Berger et al. 2005a).

Fig. 16 Tectonic interpretation of the Palaeogene southern
URG and the Rhine-Bresse Transfer Zone (RBTZ). An almost
constant total crustal extensional strain of about 5 km has been
distributed within several graben domains of variable width
(black bars). The orthogonally rifted Potash Basin (PB),
representing the narrowest part of the graben, experienced an
average strain of about 14% extension, resulting in strong
subsidence and pronounced graben shoulder uplift, whereas the
obliquely rifted Rhine-Bresse Transfer Zone experienced only
about 2% extensional strain, resulting in negligible subsidence
and the formation of a swell, which acted as barrier towards the
Molasse Basin and the Bresse Graben (BG)

Table 1 Measured Alost and calculated DL values for several
published cross-sections in the URG applying volume balancing
with a Zd of 27 km

Section Alost (km2) DL (km)

1 ‡101 ‡3.7
2 127.6 4.7
3 129.9 4.8
A–A¢ 121 4.5
B–B¢ 112 4.13

Location of the sections is shown in Fig. 15. For section 1 an
accurate Alost value cannot be given, because the base-Mesozoic
reference-level has been eroded before rifting
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The RBTZ is superimposed onto a WSW–ENE

trending, Permo-Carboniferous trough system; its

faults were repeatedly reactivated during the evolution

of the URG and the Bresse Graben (Ustaszewski et al.

2005b). Partial decoupling of the Mesozoic cover from

the basement during their reactivation played an

important role in the development of the N–S and

NNE–SSW trending fault system that characterizes the

RBTZ (Fig. 16).

Discussion and conclusions

The rift-related subsidence of the southern parts of the

URG commenced during the Middle Eocene, in-

creased during the Late Eocene-earliest Oligocene and

decreased considerably during the Middle Oligocene.

Miocene termination of rift-subsidence of the southern

parts of the URG and deep erosional truncation of

their syn-rift sediments is related to lithospheric fold-

ing controlling rapid uplift of the Vosges-Black Forest

Arch (Dèzes et al. 2004).

For the Palaeogene evolution of the southern parts

of the URG, Chorowicz and Defontaines (1993),

Schumacher (2002), Behrmann et al. (2003), Bertrand

et al. (2005) and Schwarz and Henk (2005) postulated

oblique rifting. However, there is no evidence for a

temporal shift of facies belts during the Middle Eocene

to Early Oligocene in the URG. Based on the pre-

sented results, Palaeogene extension across the south-

ern URG was almost perpendicular to the rift axis and

normal faulting occurred along its break-away faults.

However, contemporaneous transtensional faulting

occurred along transfer faults across which the initial

rift width (L0) increased/decreased (e.g. Kandern-

Hausen Fault).

The Potash Basin is located in the deepest and

narrowest part of the southern URG. Facies analyses

indicate that this basin was under-filled most of the

time during early Bartonian, Priabonian and early

Oligocene times, when the Salt Formation accumu-

lated. Evaporites formed in the central basin part and

alluvial fans prograded from the rift flanks. Mecha-

nisms controlling the development of the three first

order evaporite depositional cycles are still a matter of

dispute. Duringer (1988) attributed the development of

these first order cycles to climatic controls. Although

deposition of evaporites is obviously climatically con-

trolled, almost all levels of the Salt Formation do in-

deed contain evaporitic layers that can be related to a

second order climatic cyclicity. For the Pechelbronn

Beds in the northern parts of the URG, which are time

equivalent to the Salt Formation, Derer et al. (2003)

implied a eustatic signal. However, it has as yet to be

unequivocally established that the URG was con-

nected to marine realms during this time span. Our

results strongly suggest tectonic controls on the

development of accommodation space and therefore

the observed first order cyclicity reflects tectonic cycles

that governed the shift towards an underfilled basin

mode in response to accelerated subsidence. None-

theless, the factors leading to development of the ob-

served first order cycles are still controversial.

As a first approximation the URG presumably

represented during Middle Eocene to Early Oligocene

times an enclosed depositional system that was af-

fected by along-strike variations in accommodation

space, which in turn was governed by changes in the

initial graben width L0 and local clastic supply from the

uplifted rift flanks. The initial graben width largely

resulted from pre-existing crustal discontinuities that

were reactivated under the prevailing stress regime

(Schumacher 2002; Dèzes et al. 2004; Ustaszewski

et al. 2005a).

Across the URG the total extensional displacement

DL amounts to about 5 km and appears to be rather

constant along strike, likewise Zd, which appears to be

Fig. 17 Alluvial fan configuration observed near Kandern (for
location see Fig. 6) at the triple junction of the eastern main
border fault and Kandern-Hausen Fault (KHF). The Kandern
Fan prograded westward and the age of the pebbles ranges from
Middle Jurassic to Middle Triassic. The Hammerstein Fan and
the Holzen Fan prograded northwest/northward and include
almost exclusively Late Jurassic limestone pebbles. The specific
alluvial fan configuration points to greater throw on border fault
in the narrow graben segment northern the KHF as well as
decreased throw on normal faults south of the KHF, along which
the graben broadens to the south by about 20 km
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located near the Moho. The constancy of DL and Zd

resulted in a graben volume VR (Alost) being almost

constant along strike. However, the extensional dis-

placement was partitioned over variably wide graben

segments (Lf � 35–65 km) with narrow graben seg-

ments corresponding to relatively high-b basins (e.g.

Potash Basin) and wide segments to relatively low-b
basins (e.g. southernmost part of URG around Basel).
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(2003) Sedimentary response to tectonics in extensional
basins: the Pechelbronn Formation (Late Eocene to Early
Oligocene) in the northern Upper Rhine Graben, Germany.
In: McCann T, Saintot A (eds) Tracing tectonic deformation
using the sedimentary record. Geol Soc (London) Spec
Publ, vol 208, pp 55–69
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